Multifunction digital thermostat TER-9 #### Advantages - Digital thermostat with 6 functions and in-built time switch clock, with daily and weekly program (as SHT-1). Thermo functions can be managed also in real time - Complex control of heating and water heating in buildings, solar heating etc - 2 thermostats in one, 2 temperature inputs, 2 outputs with potential free contact - Functions: two independent thermostats, 1x dependent, differential thermostat, 2-stage thermostat, thermostat with dead zone, heating functions - Program setting of output function, calibration of sensors according to reference temperature (off set) - Thermostat is inferior to a program of digital switch clock - 2 -module, DIN rail mounting - Supply AC 230 V or AC/DC 24 V galvanically separated - Output contact 1x changeover 8 A / 250 V AC1 for each output - Memory for the most often used temperatures - Well-arranged display of set and measured data, illuminated LCD by backlight - Zero error when value setting - Function of monitoring short-circuits or sensor disconnection | Multifunction digit | al thermostat | TER-9 | | | |---------------------|---------------|-----------|---------------|--------------------| | Туре | In
[A] | Code No. | Weight
[g] | Packaging
[pcs] | | TER-9 24V AC/DC | 8 | 002471803 | 140 | 1 | | TER-9 230V AC | 8 | 002471824 | 140 | 1 | ^{*}Note: Order sensor TZ from the table below | Thermal sensors TZ | | | | | |--------------------|------------------------|-----------|--------|-----------| | Туре | lenght of sensor cable | Code No. | Weight | Packaging | | | [A] | | [g] | [pcs] | | sensor TZ-0 | 0,11 m. | 002471809 | 4,5 | 1 | | sensor TZ-3 | 3m. | 002471810 | 103 | 1 | | sensor TZ-6 | 6m. | 002471811 | 216 | 1 | | sensor TZ-12 | 12 m. | 002471812 | 418 | 1 | # Thermostat for monitoring temperature of motor winding TER-7 #### Advantage: - Monitors temperature of motor winding of motors with built in PTC sensor - Fixed levels of switching - MEMORY function active by DIP switch - RESET of faulty state: - button on the front panel - by external contact (remote by two wires) - Function of short-circuit or sensor disconnection monitoring, red LED flashing indicates faulty sensor - Output contact: 2x changeover 8 A /250 V AC1 - Red LED shines and indicates exceeded temperature - Multivoltage supply AC/DC 24-240 V (UNI) - 1-module, DIN rail assembly possible | Termostat rela | y TER-7 | | | |----------------|-----------|--------|-----------| | Туре | Code No. | Weight | Packaging | | | | [g] | [pcs] | | TER-7 | 002471804 | 65 | 1/10 | # Multifunction digital thermostat TER-9 | | TER-9 | |----------------------------|--------------------------------------| | Number of functions | 6 | | Supply | A1-A2 | | Supply voltage | AC 230V or AC/DC 24V, galvanically | | | separated | | Consumption | max. 3,5 VA | | Supply voltage tolerance | -15% - +10% | | Measuring circuit | | | Measuring terminals | T1 - T1 in T2-T2 | | Temperature range | -40+110 °C | | Hysteresis (sensitivity):) | adjustable in range 0.55K | | Difference temperature | adjustable 1 20 °C | | Sensor | termistor NTC 12Ω at 25°C | | Sensor fault indication | sign "Err" | | Measuring accuracy | 5 % | | Repeat accuracy | <0,5 % | | Temperature coefficient | < 0.1 % / °C | | Output | | | Number of contacts | 1 x changeover for each output (AgNi | | Rated current | 8 A / AC1 | | Breaking capacity | 2500 VA / AC1, 240W / DC | | Switching voltage | 250V AC1/ 24V DC | | Min. breaking capacity DC | 500 mW | | Output indication | ON / OFF | | Mechanical life | 1x10 ⁷ | | Electrical life | 1x10 ⁵ | | Controlling | | | Operating temperature | -20+55 °C | | Storage temperature | -30+70 °C | | Electrical strength | 4 kV (supply - contact) | | Operating position | any | | Mounting | DIN rail EN 60715 | | Protection degree | IP 40 from front panel | | Overvoltage category | III. | | Pollution degree | 2 | | Max. cable size | 2.5 mm ² | | | 00 35 ((4 | | Dimensions | 90 x 35,6 x 64 mm | #### Connection Note: It is possible to operate the device with one sensor. In such case it is necessary to connect resistor $10k\Omega$. This resistor is a part of delivery. ### Description #### 2 independent single-stage thermostat - <u>Legend:</u> Ts1 real (measured) temperature 1 - Ts2 real (measured) temperature 2 T1 adjusted temperature T1 - T2 adjusted temperature T2 - H1 adjusted hysteresis for T1 H2 - adjusted hysteresis for T2 - dy1 set switching delay of the output dy2 set delay on output breaking - 15-18 output contact (for T1) - 25-28 output contact (for T2) Output contact switched until adjusted temperature is reached. Hysteresis eliminates frequent switching. Heating/cooling function adjusted in the menu. #### Dependent functions of 2 thermostats - <u>Legend:</u> Ts1 real (measured) temperature 1 - Ts2 real (measured) temperature 2 T1 adjusted temperature T1 - T2 adjusted temperature T2 H1 adjusted hysteresis for T1 - H2 adjusted hysteresis for T2 dy1- set switching delay of the output - dy2 set delay on output breaking - 25-28 output contact (for T2) 15-18 output contact (intersection T1 and T2) Output 15-18 is closed, if temperature of both thermostats is bellow an adjusted level. When any thermostat reaches adjusted level, the contact 15-18 open. Serial inner connection of thermostats (logic function AND). #### Differential thermostat #### Legend: - Ts1 real (measured) temperature T1 - Ts2 real (measured) temperature T2 D - adjusted difference - dy1- set switching delay of the output dy2 set delay on output breaking - 15-18 output contact (for T1) 25-28 output contact (for T2) Switching of output corresponds with input, which has lower temperature when difference is exceeded differential thermostat is used for keeping two identical temperature e.g. in heating systems (boiler and reservoir), solar systems (collector reservoir, exchanger), water heating (water heater, water distribution) etc. #### 2-stage thermostat #### Legend: - Ts real (measured) temperature - T1 adjusted temperature D adjusted diff erence - H1 adjusted hysteresis for T1 H2 adjusted hysteresis for T2 - dy1- set switching delay of the output dy2 set delay on output breaking - 15-18 output contact - 25-28 output contact Typical example of use for two-stage thermostat is e.g in boiler-room, where there are two boilers from which one is main and the other one is auxiliary. The main boiler is managed according to set temperature and auxiliary boiler is switched in case temperature falls under set difference. Thus it helps to the main boiler in case outside temperature dramatically falls. In the range of difference (D) output 15-18 functions as normal thermostat to input 1 (type 1). In case temperature falls under set difference, output 2 switches. ## Thermostat with "WINDOW" - Ts real (measured) temperature - T1 adjusted temperature MAX T2 adjusted temperature MIN (T2=T1-D) - H1 adjusted hysteresis for T1 - H2 adjusted hysteresis for T2 dy1- set switching delay of the output - dy2 set delay on output breaking 15-18 output contact - 25-28 output contact Output is closed (heating) only if temperature is within adjusted range. If temperature is out of range, the contact opens. T2 is set as T1-D. The function is used for protection of gutters against freezing. ### Thermostat with dead zone Ts - real (measured) temperature - T1 adjusted temperature T1 - T2- adjusted temperature T2 (T2=T1-D) - H1 adjusted hysteresis for T1 - H2 adjusted hysteresis for T2 dy1- set switching delay of the output - dy2 set delay on output breaking 15-18 output contact (heating) - 25-28 output contact (cooling) In case of thermostat with a "dead zone" , it is possible to set temperature T1 and a difference (respectively a width of dead zone D). In case the temperature with set hysteresis H1 is lower than T1, the output contact switches heating ON and when T1 is reached it opens. In case the temperature falls under T2, contact switches cools down and opens when T2 is reached. This function can be used for example for automatic air warming and cooling in ventilation so the sit is always within the range T1 and T2. ### Technical data # Thermal sensor TZ Temperature sensors are made of thermistor NTC embedded in a metal sleeve by thermo-conductive sealer (TZ) - cable V03SS-F 2Dx0,5mm with silicon insulation - suitable mainly for use in extreme temperatures | Technical parameters TZ | | |-------------------------|------------------------| | Range: | -40+125°C | | Scanning element: | NTC 12K 2% | | In air/in water: | (t65) 62s/8s | | In air/in water: | (t95) 216s/23s | | Cable material: | silicone | | Terminal material: | nickel-couted copper | | Protection degree: | IP 67 | | Protection class: | II (double insulation) | | sistive values of sensors in dependance on temperature | | |--|-----------------| | Temperature (°C) | Sensor NTC (kΩ) | | 20 | 14,7 | | 30 | 9,8 | | 40 | 6,6 | | 50 | 4,6 | | 60 | 3,2 | | 70 | 2,3 | **TZ: Thermal sensors for range -40...+125°**TZ-0 - Thermo sensor can be connected directly to terminal block (length of the sensor 110mm) TZ-3 - Temperature sensor 3m, double isolation silicone TZ-6 - Temperature sensor 6m, double isolation silicone TZ-12 - Temperature sensor 12m, double isolation silicone #### **Dimensions** ### 1-module devices ### 2-module devices